Honokiol synergizes chemotherapy drugs in multidrug resistant breast cancer cells via enhanced apoptosis and additional programmed necrotic death.

نویسندگان

  • Wei Tian
  • Yongchuan Deng
  • Ling Li
  • Haifei He
  • Jie Sun
  • Dong Xu
چکیده

Multidrug resistance (MDR) is a major challenge in cancer therapy. Apoptosis tolerance is one of the key mechanisms of MDR. Honokiol, a small-molecule pharmacologically active component, exhibits competent cytotoxicity in a variety of human cancer cells through apoptosis and other forms of programmed cell death (such as programmed necrosis). Although much work has been done on its antitumor effects, little attention has been paid on systemic evaluation of efficacy of honokiol combined with other chemotherapeutic agents, especially in drug‑resistant cell lines. Here, we systematically and quantitatively assess its combinational effect with different chemotherapeutic agents using the combination index (CI) equation. We found that honokiol synergized with chemotherapeutic agents both in sensitive and resistant, solid and non-solid (MCF-7, HL-60, MCF-7/ADR and HL-60/ADR) cell lines. Honokiol (40 µg/ml) induced necrotic cell death in MCF-7/ADR cells with characterized morphological and biochemical features. Co-incubation with honokiol and etoposide (VP-16) activated a complex death modality, which was composed of necrotic cell death and apoptosis. This dual-death pathway was shut down when pretreated with pan-caspase inhibitor (z-VAD-fmk) and cyclophilin D inhibitor (cyclosporin A). Western blot analysis results proved that honokiol also enhanced VP-16-induced apoptosis potentially via blocking nuclear factor‑κB (NF-κB) activation. Our data for the first time quantitatively demonstrate that honokiol synergizes frequently-used chemotherapeutic agents via enhanced apoptosis and additional programmed necrotic death. These findings indicate a promising way to circumvent MDR and apoptosis tolerance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sambucus Nigra Synergizes Cisplatin to Improve Apoptosis and Metabolic Disorders, and Reduce Drug Resistance in Two Human Breast Cancer Cell Lines

Background: Despite modern developments in its management, still major concerns remain about drug resistance in chemotherapy. Natural adjuvants combined with chemotherapy might be the answer. We examined the anti-cancer, anti-proliferative and synergistic effects of Sambucus nigra extract with cisplatin chemotherapy (CDDP) on MCF-7 and MDA-MB-231 human cancer cell lines. Methods: MCF-7 and MDA...

متن کامل

Honokiol Enhances Paclitaxel Efficacy in Multi-Drug Resistant Human Cancer Model through the Induction of Apoptosis

Resistance to chemotherapy remains a major obstacle in cancer therapy. This study aimed to evaluate the molecular mechanism and efficacy of honokiol in inducing apoptosis and enhancing paclitaxel chemotherapy in pre-clinical multi-drug resistant (MDR) cancer models, including lineage-derived human MDR (KB-8-5, KB-C1, KB-V1) and their parental drug sensitive KB-3-1 cancer cell lines. In vitro an...

متن کامل

Cyclophilin D modulates cell death transition from early apoptosis to programmed necrosis induced by honokiol.

Honokiol is a pharmacologically active small molecule with multifunctional antitumor effects. Although plenty of literature is available on honokiol-triggered apoptosis and programmed necrosis, few studies have investigated the potential existence of death mode transition from apoptosis to programmed necrosis. In the current study, we demonstrated that the necrotic cell population (PI-positive)...

متن کامل

Ceramide glycosylation potentiates cellular multidrug resistance.

Ceramide glycosylation, through glucosylceramide synthase (GCS), allows cellular escape from ceramide-induced programmed cell death. This glycosylation event confers cancer cell resistance to cytotoxic anticancer agents [Liu, Y. Y., Han, T. Y., Giuliano, A. E., and M. C. Cabot. (1999) J. Biol. Chem. 274, 1140-1146]. We previously found that glucosylceramide, the glycosylated form of ceramide, a...

متن کامل

The Novel Triazolonaphthalimide Derivative LSS-11 Synergizes the Anti-Proliferative Effect of Paclitaxel via STAT3-Dependent MDR1 and MRP1 Downregulation in Chemoresistant Lung Cancer Cells.

Multidrug resistance (MDR) is a major cause of the inefficacy and poor response to paclitaxel-based chemotherapy. The combination of conventional cytotoxic drugs has been a plausible strategy for overcoming paclitaxel resistance. Herein, we investigated the cytotoxic effects and underlying mechanism of LSS-11, a novel naphthalimide derivative-based topoisomerase inhibitor, in paclitaxel-resista...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International journal of oncology

دوره 42 2  شماره 

صفحات  -

تاریخ انتشار 2013